Eigenfunction behavior and adaptive finite element approximations of nonlinear eigenvalue problems in quantum physics

نویسندگان

چکیده

In this paper, we investigate a class of nonlinear eigenvalue problems resulting from quantum physics. We first prove that for any open set G , there exists an eigenfunction cannot be polynomial on which may reviewed as refinement the classic unique continuation property. Then apply non-polynomial behavior to show adaptive finite element approximations are convergent even if initial mesh is not fine enough. finally remark similar arguments can applied linear improve relevant existing results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

External finite element approximations of eigenvalue problems

— The paper is devote d to the finit e element analysis of second order e Hipt ie eigenvalue problems in the case when the approximate domains Oh are not subdomains of the original domain fl a U. The considérations are restricted to piecewise linear approximations and in the case of eigenfunctions to simple eigenvalues. The optimum rates of convergence for hoth the approximate eigenvalues and t...

متن کامل

Convergence of adaptive finite element methods for eigenvalue problems

In this article we prove convergence of adaptive finite element methods for second order elliptic eigenvalue problems. We consider Lagrange finite elements of any degree and prove convergence for simple as well as multiple eigenvalues under a minimal refinement of marked elements, for all reasonable marking strategies, and starting from any initial triangulation.

متن کامل

Nonlinear Eigenvalue Problems and Galerkin Approximations

with u possibly satisfying additional normalization conditions. I t is our purpose in the present note to describe a way of applying a method of Galerkin type to such problems which works in particular for nonlinear elliptic boundary value problems of variational type. We obtain from it a general theorem on the existence of normalized eigenfunctions for the latter problem, and in the case of T ...

متن کامل

Nonlinear Finite Element Analysis of Bending of Straight Beams Using hp-Spectral Approximations

Displacement finite element models of various beam theories have been developed using traditional finite element interpolations (i.e., Hermite cubic or equi-spaced Lagrange functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, total rotation φ and/or shear strain γxz, or in the integral form u...

متن کامل

Finite Element Approximations of Nonlinear Elastic Waves

In this paper we study finite element methods for a class of problems of nonlinear elastodynamics. We discretize the equations in space using Galerkin methods. For the temporal discretization, the construction of our schemes is based on rational approximations of cosx and ex . We analyze semidiscrete as well as secondand fourth-order accurate in time fully discrete methods for the approximation...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Modelling and Numerical Analysis

سال: 2021

ISSN: ['0764-583X', '1290-3841']

DOI: https://doi.org/10.1051/m2an/2020078